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Abstract. The effects of the surface exchange anisotropy on the ordering of ferromagnetic films
are studied for the exactly solvable classical spin-vector model @itk co components. For

small surface anisotropy, <« 1 (defined relative to the exchange interaction), the shiff.dh a

film consisting ofV > 1 layers behaves & — T,.(N) « (1/N) In(1/7.) in three dimensions.

The finite-size scaling limit?"% — 7, (N) oc 1/(/?N?), which is realized for the model with a

bulk anisotropyy’ « 1in the rangeVy'¥/2 > 1, never appears for the model with the pure surface
anisotropy. Here foV exp(—1/7,) 2 1 in three dimensions, film orders at a temperature above
TPuk (the surface phase transition). In the semi-infinite geometry, the surface phase transition
occurs for whatever small values gf (i.e., the special phase transition corresponcmc%k) in
dimensions three and lower.

1. Introduction

Reduction of Curie temperatureg,, of ferromagnetic films consisting &f > 1 layers with
respect to the bulk value is usually represented in the form

[P — T.(N)]/ TP = A/N*. (1.1)

For the exponent. the finite-size scaling theory [1, 2] yields = 1/v,, wherev, is the
critical index for the bulk correlation length. The above result has been derived with the
Ising model, or the field model with a one-component order parameter, in mind. For weakly
anisotropic Heisenberg model and, in general, for models with several spin components, the
nearly Goldstone modes can drastically change the character of ordering in magnetic films.
In particular, in the dimensionality range< 3 in the isotropic limit at low temperatures, the

film behaves as a system of dimensionality= d — 1 < 2 and cannot order because of long-
wavelength fluctuations. This means that the amplitdde equation (1.1) should diverge

in the isotropic limit. Moreover, even the functional form of equation (1.1) should change
to explicitly reflect thed’-dimensional nature of a nearly isotropic film. For the model with
the uniaxial exchange anisotropy (longitudinal spin components couplédng transverse
components coupled byJ with n < 1, so thaty’ = 1 — n measures the anisotropy) it
was shown in [3, 4] that equation (1.1) is only valid for rather thick fillNg,. = 1, where

ke = 1/6.. = J/2d(1/n — 1) is the inverse transverse correlation length at the bulk critical
point, which goes to zero in the isotropic limit. Here, in three dimensions for the classical spin-
vector model withD — oo components one has= 2 andA ~ 1/«.. Inthe rangeVk,. < 1

~

ad’-dimensional behaviour is realized, which is characterized byl andA ~ In[1/(x.N)]
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in three dimensionsf = 3. For extremely small anisotropies, the film orders at such low
temperatures that spins along the direction perpendicular to the surface are strongly correlated
with each other and they can be considered as single composite spins. Thus, the film is mapped
on thed’-dimensional monolayer with the exchange interactiah, which yields [4]

E(d5 J5 7)/’ N) ; T‘C(d/’ NJ: dr)//d/7 1)' (12)

Although the results of [3, 4] have been obtained for the infinite-component classical vector
model, the qualitative features of this solution should be shared by the more realistic Heisenberg
model,D = 3. In particular, formula (1.2) is model independent and valid foDalt 2.

The purpose of this paper is to study ordering in magnetic films wétlrEaceanisotropy.
The latter arises, typically, due to the violation of the symmetry of a crystal field acting on
the magnetic ions at the surface. Although this anisotropy has a single-site form, here we will
consider the anisotropy of the exchange interactions between the surfaces spins, instead. This
leads to the same qualitative results and allows one to use the formalism developed for the
exchange-anisotropy models in [3—6]. One can expect that the surface anisotropy stabilizes
ordering in films withd < 3 andN > 1 weaker than the bulk one. If the surface anisotropy
is very small, therf, <« 7Y, and at such low temperature, its influence should redistribute
over N layers, so that its effective valueig; ~ n;/N. The latter should result in a more
pronounced suppression ff in magnetic films. This can be seen immediately in the case of
extremely small surface anisotropy, where the analogue of equation (1.2) reads

T.d,J,n.,N)=T.(d,NJ,n./N,1). (1.3)

A specific feature of the model with pure surface anisotropy is the absence of a finite length
scale, such as the transverse correlation lefigth= 1/«, at criticality. As aresult, the system
is always in the rang&« <« 1 and there is no crossover to the finite-size scaling regime of
equation (1.1). As aresult, for a small surface anisotropy, the corresponding analytical solution
for the Curie temperature of the film holds in a much wider rang¥ of

If surface anisotropy exceeds a critical value (N), the Curie temperature of the film
exceeds the bulk Curie temperatufe:> 7. The possibility of this effect, which is absent
in the mean-field approximation (MFA), can be seen from the following simple arguments. The
isotropic largeP model orders aTCb“'k = Jo/(DW,), wherelJy is the zero Fourier component
of the exchange interaction aiél; = P,;(1) (see equation (2.21)) is the Watson integral
containing the information on the lattice dimensionality and structure. On the other hand,
the Curie temperature of the monolayer with the (surface) anisotropy of the extreme Ising
type,n, = 0 (i.e.,n, = 1), isT.(1) = (d’/d)Jo/D. For the simple cubic lattice one has
W3 = 1.516 39, so that the Curie temperature of the anisotropic monolayer slightly exceeds
the isotropic bulk Curie temperature. That is, the lack of interacting neighbours at the surface
can be compensated for by a stronger suppressigf‘fdue to long-wavelength fluctuations
making contribution td¥,. Itis clear that the bilayer has a substantially higher valug tiian
the monolayer, and thatin dimensions lower than three the bulk Curie temperature is suppressed
even more. For the continuous-dimension model introduced in [6], on&has= 1.719 324
and W5 = 2.527059. In two dimensions and beloW, diverges and thug® goes to
zero in the isotropic limit. On the other hand, the theory predicts a finite-temperature surface
phase transition for any nonzero values of the surface anisotfppyhus, ford < 2 the
surface anisotropy is the only source of ordering. However, this situation is only realized in
the limit D — oo. Since in two dimensions the surface is one-dimensional, ordering at the
surface should be destroyed by thermal fluctuations of the longitudinal spin components for
any finite D. In fact, surface anisotropy already plays a major roledfag 3. We will see
below thatn, .(N) goes to zero in the limilv — oo in this dimensionality range. Thus, in
the semi-infinite geometry a surface phase transition aB8# occurs for however small a
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value of the surface anisotropy, i.e., the bulk Curie temperature is the temperature of the special
phase transition as well!

The main part of this paper is organized as follows. In section 2 the closed system of
equations describing thB — oo component spin-vector model in the symmetric phase is
written down. In section 3 the analytical calculation of the correctidf} fo films with a weak
surface anisotropy is presented. In section 4 the surface phase transition is considered. The
results of numerical calculations are at appropriate places in sections above. In section 5 the
results obtained are summarized, and possibilities of finding similar regimes in more realistic
models are discussed.

2. Basic equations and their solution

The Hamiltonian of the anisotropic classidalcomponent spin-vector model can be written
in the form

1 D
H = -5 12,: Jij (mzimzj + i ;maima,j> m;| =1 (2.1)

where dimensionless anisotropy factors satigfy<< 1. This model was introduced, in the
isotropic form, by Stanley, who showed that its partition function in the spatially homogeneous
case in the limitD — oo [7] coincides with that of the spherical model [8]. There are,
however, a number of essential differences between the exactly solvableDlimit co of
equation (2.1) and the spherical model. In particular, there is only one correlation function
(CF) in the spherical model, and thus this model cannot incorporate anisotropy.Inthec
model, there are longitudinal and transverse CFs which differ b&lowven in the spatially
homogeneous isotropic case [9].

The system of equations describing the spatially inhomogenBous oo model both
above and belowl, was obtained in [5]. At or abové&, in zero field, the magnetization
(m;) is zero and the model is described by the closed system of equations for the correlation
functions of transversey(> 2) spin components;; = D(m4;m,;), and the spatially varying
gap parametelG;. (The definition ofG; can be found in [5]; here it is nonessential.) In the
film geometry, it is convenient to use the Fourier representatiah #a d — 1 translationally
invariant dimensions parallel to the surface and the site representationdthtid@nension.
The equations can easily be generalized for the anisotropy factors taking themyaludgthin
thenth layer and, ,+1 for the interaction between thwth and(n £+ 1)th layers. For the model
with nearest-neighbour (nn) interactions, the equation for the Fourier-transformeg GH
then takes the form of a system of second-order finite-difference equations in the set of layers
n=12,...,N:

an NnnOnn' — NMnn+10n+1n’ — Nnn—10n—10w = Zdesnn’ (22)
whereb, is given by
by =d/(NunGn) — d/)L; (23)

A, for thed-dimensional hypercubic lattice reads

1 &
Yo=2 > cogg) (2.4)
i=1

and the lattice spacing has been set to unity. In equation @i8)the reduced temperature
defined by
T

Jo
_ MFA _



4326 D A Garanin

where for hypercubic latticed, = 2dJ. The quantitiesy,, andoy+1, in the nonexisting
layers, which enter equations (2.2) at the film boundaries1 andn = N, are set to

00,n” = ON+1n = 0 (26)

as free boundary conditions. The autocorrelation functions in ea¥Hafers,s,,,, satisfy the
set of constraint equations
dq
Spn = / (27_[)df om(q) =1 (27)

which are the consequence of the spin rigidiiy,;| = 1. A straightforward algorithm for
numerically solving the equations above is to compute, for a given s&t ddll o,,,, from the
system of linear equations (2.2) and then insert the results in equation (2.7) to obtain, after
integration over the Brillouin zone, a set of nonlinear equationgfor

The first step of the routine described above can be conveniently performed with the help
of the continued-fraction formalism which is described in detail in [4, 6]. For a particular type
of model with surface and bulk anisotropies, which is defined by

N1 = NNN = s g 1 Nnn = NMnoptl = 1 g 1 (nn # 11’ NN) (28)
and which will be studied below, it is convenient to rewrite equations (2.2) in the form

Zgrlantl’ — Op+ln’ — Op—1w = (2d9/n)8nn’ (29)
whereb, = (n,/n)b, forn = 1, N andb, = b, otherwise. Explicitly,
En = d/(nGn) - d/)‘; + (1 - ns/n)d/)‘;((gn,l + 5nN)~ (210)

An alternative way to find,,,, which is more appropriate for the analytical treatment, is
to represent equations (2.2) in the matrix form
13’& = dlande/nnn) B, = an Bn,nil = _nn.nil/nnn (211)

so that the solution fos,,, is given byo,,, = (2d6/n,,fn/)B,;}. Since the diagonal part of
the matrix B, which depends on the wavevecigris proportional to the unity matrix, the
eigenvalues and eigenvectors®tan be defined as

BU, = [u, +2d'(1- 1)U, 0=1,2...,N (2.12)

the eigenvectorélp being independent @f. It should be noted that matri& is nonsymmetric,
Bn,nil = _nn,nil/nnn # Bnil,n = _nn.nil/nnil,niln ianniSOtl'Opy faCtor37nn Change from
one layer to the other. In this case its left eigenvecw[sdiffer from its right eigenvectors

0,,. The Green functiow,,, can be expanded over the set of eigenvectors of the problem as
follows

2d0 & U W},
Mn'n’ o=1 Hp + 2d/(l - )Li]) .

Oun (@) = (213)

Here matrixU is composed of the right eigenvectoﬁ’g as columns and’7 is composed of
the left eigenvectorﬁfg as rows. The right and left eigenvectors satisfy the biorthogonality
condition Y", W,,,Uny = 8,,. In general, matrixJ in nonunitary: U~ = WT # 0.
Integration in equation (2.7) can be performed analytically with the result

2d0 L Uy W1 2d’
S =—— ) L Pd/< : ):1 (2.14)
Man 5= 2d" + ju, 2d" +

whereP; (X) is the lattice Green function for the layer, which is defined similarly to the lattice
Green functionP(X) = P,;(X) below. Using this method with tabulated valuesR)f(X)
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can save computer time, in comparison to the continued-fraction method. On the other hand,
the continued-fraction method is fast enough and already implemented, so that it is used here.
The diagonalization formalism above is used for analytically solving the problem in the next
two sections.

After the set ofG, for a given temperature has been determined, one can compute the
longitudinal CFo %, (q) from equations (2.2) and (2.3), where all anisotropy factgsare

nn’

replaced by one. The Curie temperature of the filman now be found from the equation
[05(g=0]"=0. (2.15)

In a usual situation, the above condition should be used in the middle of the:fitmiN /2,
because for larg# the critical divergence of the spin CF at the surface is suppressed [6,10,11].
If ordering of the film is driven by the surface, it is more convenient to use equation (2.15) for
n = 1. This equation has, in general, roots, as we will see below. One should choose the
maximal root ford,, all other roots are unphysical. Bel@y, the spontaneous magnetization
appears, and the very form of the equations change.

One can also represenf;, in the form of equation (2.13) with,,, = 1, where
eigenvalues.;, and eigenvectors componerifs, correspond to the problem with the matrix

B%. The latter is defined by equation (2.11), where anisotropy fagigrare replaced by one.
SinceB: |s a real symmetric matrix,8°)” = B%, matrix U< is unitary: (U%)~1 = (U%)7, i.e.,
Up,jl = U,,. The eigenvalue problem correspondlng to the longitudinal CF can be written in
the form of a discrete Scéidinger equation for a particle with mass= %

_wn—l + Zl/fn - I//n+1 + Vrﬂ//'n = EI/fn Vn = Zd(l/Gn - 1) (216)
as in quantum tight-binding models. This form is useful for the interpretation of the results;
the eigenvectors and eigenvalues of equation (2.16) are more compact forms of the quantities
introduced above:

o VoW
44 _ npynp
0%, (q) = 2d6 Z E, g g <1 (2.17)
whereE, = uj andy,, = ; The condition for the Curie temperature of the film has the
form
E1(6:) =0 (2.18)

whereE; is the lowest of the eigenvalués,. The N — 1 solutions corresponding #, = 0,
p > 2, are unphysical. It should be noted that for the transverse correlation function the
problem cannot, in general, be interpreted quantum mechanically, since the ﬁmiax be
non-Hermitean, as is the case for the model with surface anisotropy. The eigenvalues of the
transverse probleny,,, exceed the longitudinal eigenvalugs; in the Ising limity <« 1 one
hasu, o« 1/n, whereast,, become independent gf

One should note that the longitudinal CF is, in our formalism, only a ‘slave’ quantity, it
does not affect the basic equations of the model and is not subject to a constraint condition
similar to equation (2.7). The physical reason for this is the irrelevance of fluctuations of the
singlelongitudinal component in comparison to thoseldbf- 1 transverse ones in the limit
D — oc.

In the spatially homogeneous bulk sample one@ias= G andn,, = n,..+1 = n, and
the transverse CF can easily be found [4, 6]. The resulting equation for the gap parameter has
the form

0GP(nG) =1 (2.19)

dk 1
P(X) = / (271)‘11——)()% (2.20)

where
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Figure 1. Curie temperatures of thé-layer simple cubic lattice film for different values of surface
anisotropy. The horizontal dotted line is the bulk valugaf Solid circles are the values &} for
the model with the bulk anisotropy = 1 (classical Ising model).

is the lattice Green function. The quantity = J;,/Jo for the nearest-neighbour interaction

is given by equation (2.4) with’ = d andg = k. The solutionG of equation (2.19)
increases with lowering temperatufe at G = 1 the gap in the longitudinal CF closes,
longitudinal susceptibility diverges, and the phase transition occurs. This defines the bulk
transition temperature [12]

o> = 1/P(n) (2.21)

that generalizes the well known result for the spherical médet 1/ P (1) [8]. The lattice
Green functionP (X) satisfiesP(0) = 1 and has a singularity & — 1, the form of which
in different dimensions can be found in [6]. Ror< 2, the Watson integraV = P (1) goes
to infinity; thus, formula (2.21) yields nonzero values of the Curie temperature only for the
anisotropic modely < 1. It should be noted that in the anisotropic case the critical indices
of the model coincide with the mean-field ones due to the suppression of the singularity of
P(nG) for G — 1. Belowé,, the spontaneous magnetization appears@asticks to one.

In equation (2.20) one has, = 1 — k2/(2d) in the long-wavelength limit. Thus, the
inverse transverse correlation lengtlfollowing from equation (2.20) is defined by

k2= 2d[1/(nG) — 1]. (2.22)

Its critical-point valuec, = +/2d[1/n — 1] measures the bulk anisotropy and varies between 0
forthe isotropic model ansb for the classical Ising model. The inverse longitudinal correlation
lengthk, is determined byez? = 2d[1/G — 1] and it diverges at the critical point. In contrast
to finite-D theories, where the longitudinal correlation length = 1/«, plays the major
role in the scaling, here in the limi® — oo it becomes only a slave variable, whereas all
the physical quantities, except the longitudinal CF, are scaled with the transverse correlation
length. | = 1/« [4,6].

Numerical solution of the problem with the method described in this section above yields
the results fol.(N) of the three-dimensional film with a simple cubic structure, which are
shown infigure 1. One can see that for small transverse anisotrogi®s,approaches its bulk
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limit much slower than the solution for the model with bulk anisotrgpy 0 (classical Ising
model), which is shown by solid circles. Since in the latter case transverse spin components
are switched off, the result coincides with that of the mean-field approximation [13]

Nji 1) ~1- % (%)2 (N>1). (2.23)

As can be seen from figure 1, the suppression of the Curie temperature in films with a
weak surface anisotropy may be quite pronounced, especially in comparison with the mean-
field result shown by solid circles. Larde shifts in flms have been observed in many
experiments (see, e.g., [14]). For larger valueg/othe film orders abov&“. This is an
indication that ordering at the surface occurs first and thus determines the Curie temperature
of the film. The decrease 6f(N) with N in this region can be easily explained. Pér— oo
both surfaces order independently at s@iy(eo). For finite N, the surfaces interact with each
other across the film and thus help each other to order. The interaction between surfaces, and
thus the corresponding increasedpf should decay exponentially with the film thickn®s
the characteristic length being the bulk correlation length. One can see thatfdl surfaces
order at a temperature substantially higher th&#, where the bulk correlation length is
rather short. With lowering’, the bulk correlation length & increases, and the effect of the
interaction of surfaces becomes more and more pronounced. The mechanism described above
is considered in more detail in section 4.

The Curie temperatures of films consisting of one and two layers can be calculated
analytically since there is no inhomogeneity of the gap parant&ter For the monolayer
the result can be obtained by a straightforward renormalization of equation (2.21) and has
the formé?c‘l = [d/(d — D] Py (n) (there is no difference between the models with bulk and
surface anisotropies). For the bilayer, the surface-anisotropy model orders, evidently, at lower
temperatures than the bulk-anisotropy one. For the latter, the expresstrctor be found
in [4]. For the surface-anisotropy model, the result has the form

1

d d
O t=Z|=Pyn)+ Py —ns)|. 2.24
=g ()] (2.2

Forn, = 0 one has? = 1, and this formula yield8, = 2(d — 1)/(2d — 1), which becomes
;—.)‘ for d = 3 (see figure 1). For comparison, for the model with the bulk anisothopyl, the
mean-field formula (2.23) yields = (2d — 1)/(2d) for N = 2. This become§ ford =3
(see figure 1). An interesting feature of the solution for the surface-anisotropy model is that the
Curie temperature of the bilayer becomes independent of the lattice structure in the Ising limit
ns = 0. The result obtained above depends on the lattice dimensiodaityy and, e.g., itis
the same for the simple cubic modeél£ 3) and the three-dimensional continuous-dimension
model ¢ = 3.0) [6]. In the Ising limit, the lattice structure comes into play for trilayers and
thicker films, where the inhomogeneity of the gap param@tebecomes essential.

The thickness dependence of Curie-temperature shifts in films with small surface
anisotropies are shown in figure 2 in the log scale. Kors> 1 they can be represented
by the formula

1
b(N) =17 (1—cos

1

C3Ks

Ky = /2d' (1), — 1) (2.25)

with 672 « = P3(1) = 1.51639 and the fitting parametes =~ 1.36. This result, which

c,bul
is derived analytically in the next section, is simpler than that for the model with the bulk
anisotropy [3,4]. The latter has the form.V « 1)

6 IN) =6k — It
c — Ye,bulk 7TN a3KCN

3
oY (N)Zo Lt +—1n
c ( ) c,bulk TN

ke =/2d(1/ — 1) (2.26)
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Figure 2. Curie-temperature shifts in simple cubic lattice films for small values of surface
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Figure 3. Curie temperature of ferromagnetic films with simple cubic structure versus surface
anisotropy.

with a3 =~ 0.35, andN under the logarithm makes the thickness dependenee shift
substantially faster tharyd (see figure 2). Foe,N 2 1 the bulk-anisotropy model shows a
crossover to the finite-size scaling regime described by equation (1.1} witl2. No such
crossover occurs for the model with surface anisotropy.

In figure 3 the Curie temperatures of 100- and 200-layer ferromagnetic films with simple
cubic structure are shown as function of the surface anisotropy. The film Curie temperature
becomes greater than the bulk one#4bp> 0.05. In this range it becomes independent of the
film thickness, which is in accord with the surface character of the phase transition. Below
the critical value of the surface anisotropy, the film Curie temperature falls @t One
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can clearly see both the log dependence obthehift on the surface anisotropy and thavl
dependence on the film thickness, as is given by equation (2.25). More careful analysis shows
(see section 4) that the critical value of the surface anisotropy, which is defined from the
conditionT.(N, n, .) = T tends to zero with the increase of the film thicknessdfat 3.

In three dimensions this dependence is logarithmjc,(N) ~ 1/In N. This means that
equation (2.25) is valid for sufficiently small anisotropy, < n;..(N), or, in other words, in

the thickness rang® exp(—1/7;) < 1. For however small a value gf, it will break down

for very largeN. Deviation of the numerically calculated points figr = 10-2 in figure 2
downwards from the straight line corresponding to equation (2.26) is a manifestation of this
incipient breakdown.

3. Isotropic and weakly anisotropic films

To get an idea about ordering in films with small surface anisotropigsgr3 dimensions, it

is convenient to start with isotropic films. These films cannot order for any finite thickNess,
because they are systems of dimensios 2 and thus long-wavelength thermal fluctuations
preclude ordering. On the other hand, it is physically clear that immediately below the bulk
value of the Curie temperature the susceptibility of a thick film should become extremely
high. This means that the lowest eigenvaluein equation (2.13) becomes extremely close

to zero. The contribution of this eigenvalue dominates in the the constraint relation (2.14),
and this makes possible analytical calculation@f Since for the isotropic model there is no
difference between longitudinal and transverse CFs, here we use more compact nétations
andv,, (see equation (2.17)). First, equation (2.14) can be summed over all layers with the
use of the orthogonality of wavefunctiods, ¥, ¥, = 8,,, Which yields

N
2d' 2d' d'N
5 Py ==_ (3.1)
2'+E, “\2a'+E,) ~ do

p=1

Next, one can subtract these equationgf§k ands from each other and separate the leading
term with very smallE'1(9). This yields

2d' _dN /(1 1
p—= Vs, ). 3.2
d <2d/+E1(9)> N=a (9 epu'k) (3.2)

SinceE, with p < 2 are not expected to change so strongl¥asit the temperature interval
6Pk, the quantity=y can be expected to be subdominant in comparison to other parts of
equation (3.2).

For the simple cubic latticer; is the Green function of the square lattice which is given by
P»(X) = (1/7) In[8/(1 — X)] for X = 1. Adopting this in equation (3.2) and exponentiating

yields
~ 27N (1 1
E1(0) = Cy(0) exp[—”T (5 - W)} (3.3)
where
X E, M%)
Cn(0) = Ea@™™) [ [ 55— (3.4)
%@

Keeping high-lying eigenvalues with ~ N in the above formula is not justified, because
P,(X) does not have its asymptotic form above in this case. On the other hand, the latter
change negligibly fof close to9?“' and thus the corresponding numerators and denominators
in equation (3.4) cancel each other. The low-lying eigenvalues also cannot change significantly
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Figure 4. Temperature dependence of three lowest eigenvadlyésr the isotropic film ind = 3.0
dimensions. Dashed lines represent equation (3.3)with 2 andcy = 8/N2.

in this temperature interval, thus the product in equation (3.4) should be of order unity. This
leads to the order-of-magnitude estimation

Cy ~ E1(0°%) ~ C/N? (3.5)
which is sufficient for our purposes, sin€g will enter under the logarithm in the expression
for the shift of the Curie temperature of the film. The second step in equation (3.5) can be
justified as follows. For thick films at the bulk criticalitg,, is close to one in the main part of
the film, excluding the regions near the surfaces. Thus, for estimation of the eigenvalues one can
setG, = 1in the whole film, which amounts to the approximatiBp(eP"k) ~ EMFA (gbulk),
Solution of the Sclirdinger equation (2.16) with the potentig] = 0 yields eigenvalues

EYFA@P") =2(1—cosq,) g, =mp/(N +1) (3.6)
(so thatEMFA(gPUky ~ 1/N2 for N > 1) and eigenfunctions
Yup = Ci, SiN(nq,) Cnp ~ 1/v/N (3.7)

which describe a particle hopping in a rigid box.

The picture described above is confirmed by numerical calculations, the results of which
are shown in figure 4. The latter were performed for the continuous-dimension model in
d = 3.0. The dashed line in figure 4 represents equation (3.3), where the transition from the
sc lattice to thel = 3.0 lattice is performed by the replacement= 2, according to the
general rule which can be found in [4,6]. The consi@nmh equation (3.5) fitsto 8 id = 3.0
dimensions.

One can ask what the variation of the gap paramétein the isotropic film below the
bulk criticality looks like. The answer in the limit <« 1 follows from the observation that all
spins become strongly correlated and thussgll become nearly the same fgr= 0. Then,
from equation (2.2), itimmediately follows thag = by = 3 andb, = 1 inside the film. This
yields

e

G, (3.8)

2d/(2d — 1) n=1N
1 n#1 N
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Figure 5. Gap parameter (energy—density) profile in the isotropic ferromagnetic fitm=n3.0
dimensions at and below the bulk criticality.

for & « 1. The corresponding zero-temperature eigenvalues can be calculated analytically
and read

E,(0) =2(1-c0sj,) G, =n(p—D/N. (3.9)

These eigenvalues are all shifted downwards with respect to those of equation (3.6), and the
lowest eigenvalue is exactly zero, in accord with equation (3.3). The eigenfunction of this
eigenvalue is constant throughout the filmy;, ; = 1/+/N. This is due to attraction of the
particle to the potential wells at the boundaries of the bdx= Vy = —1. Note that using
equation (3.9) and equation (3.6) in equation (3.4) yi€lgs= O(1) atf « 1, in contrast to
estimation (3.5) just below the bulk criticality.

Calculation of the variation of the gap paramety in the film até < 6™k is an
analytically intractable nonlinear problem, and the result of equation (3.3) does not help much.
Linearization at9 « 1 shows that deviations af/,, from the zero-temperature result of
equation (3.8) are linear in temperature. A compact analytical solution can only be obtained
for the trilayer.

The deviation of the gap parameter from the bulk value, which is definéd by G, —G,
is shown in figure 5 for the isotropic film id = 3.0 dimensions, at and slightly below the
bulk criticality (in both case& = 1). This deviation is proportional to the nonuniform part
of the energy density [6]. At the bulk criticalitg,, has the universal form

1 2
~a LT d-3
n = 1+ 4 = — 1 < 4 A
G 2?2 " > «Ln<SN/ (3.10)
for 2 < d < 4, as for the semi-infinite model [6, 10, 11]. This yields the large-distance form
Vi = =G — ud/n? l«n<N/4 (3.11)

for potentialV, in equation (2.16). Note that in [10, 11], the quantityz) = —(G, — 1) =

24V, was used. AT = 0.927°Uk, the profile ofGy, looks rather indefinite: in the middle

of the film the tendency to the zero-temperature solution of equation (3.8) is already seen,
whereas closer to the boundari@s, still increases with lowering temperature. In the whole
range ofu, the relative deviation of71,, from the bulk-criticality result is of order one. On the
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other hand, at such temperature the argument of the exponential in equation (3.3) is already
—10, thusE is very small and futher lowering of the temperature leads to the instability of
the numerical algorithm. Fortunately, the problem of finding the temperature variation of the
gap-parameter profile in the film below the bulk Curie temperature becomes nonessential in
the physically relevant three-dimensional case, because here the suppregsiontbé film
is not so strong (see below).

As we have see above, in isotropic filmsdn< 3 dimensionsE; is very small in a wide
range of temperatures but turns to zero only'at 0. If there is a small anisotropy in the
system, the basic equations for the transverse (i equations (2.2) and (2.7), are slightly
modified, and the variation of the gap paramélgin the film slightly changes. These changes
can be found perturbatively, although it is not easy to do analytically. Wheis inserted
into the equation for the longitudinal GF,, perturbations o6, perturb, in turn,E;. Since
E1(0) goes almost horizontally, a small anisotropy is sufficient to caijs® cross the zero
level at a transition temperature that is not small.

The first step, finding the perturbed variation of the gap parandgtecan be performed
qualitatively in the following way. If surface and bulk anisotropigs= 1—n, andn’ = 1—»,
are small, one setg= 0 in the last term of equation (2.10), since this term creates a gap in the
transverse Chb,, and it should be essential at small wavevectors. After that, defiijicas
the solution of the isotropic problem, one immediately finds thaadjusts so thah, retains
its isotropic value, i.e.,

d/(Gy) + L= n/m)d Sn1+ 8an) = d/ G (3.12)
This defines the correction @, due to anisotropy, which are positive. Now, proceeding to the

longitudinal CF, one can write for the eigenvalue problem of equation (¥,18) V©® +v®,
where

Vi = —=2d(1—n)/G —2d'(n = n) (Bn1 + ). (3.13)
Numerical calculations show, however, that the surface part of this perturbation is somewhat
oversimplified. It is not strictly localized in the boundary layer but redistributed over some
region, decaying in three dimensions slightly faster thar? lpresumably as/(»n®In n). This
feature is nonessential for the determination ofEhshift below; the difference of the result
with respect to those obtained with the use of the simplified form of equation (3.13) will be
absorbed into analytically unknown numerical factors.

The first-order corrections t&, due to the diagonal perturbatiaff? have the form

N
E}Jl) - Z V,fl)w,fp (3.14)

n=1
as in the usual quantum-mechanical perturbation theory. In the temperature range of interest,
slightly below the bulk criticality, the variation of the gap paramefgrdoes not strongly
differ from that at bulk criticality. Thus, estimation aﬁfp in equation (3.14) can be done
atT = TP, Here, not too close to the surfaces and the middle of the film, one should
consider the Scldinger equation (2.16) with the potenti&] given by equation (3.11).
The standing-wave solution of this equation for> 1 in the semi-infinite geometry can
be expressed through the Bessel functions and labelled with the wavevector taking continuous
values from the intervald, co) [6,10,11]. In the film this wavevector becomes quantized, and
the normalized expression fgf,, in the regiom < N /2 reads

Yup ~ (nq,/N)YY?J,(ng,) 4o ~ mp/N. (3.15)
Thus for using/, (z) ~ z*, z < 1, one obtains
Yy~ ntEYNZAO Ry~ 1N, (3.16)

n,
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Figure 6. Numerically calculated squares of normalized eigenvealggsfor the isotropic film
(N =500) ind = 3.0 dimensions at bulk criticality. Linear behaviour at snuaits in accord with
equation (3.15). The mean-field result of equation (3.7) is shown by the dotted curve.

For comparison, the MFA solution of equation (3.7) yiefdfs ~ 1/N3. Strongincrease of the
probability of finding the particle near the boundaries¥oys> 1in our case, whichisillustrated
infigure 6, is due to the long-range attractive poterifialNote that at low temperatures, where
G, approaches its limiting form given by equation (3.8), this effect becomes even stronger:
%2,1 = 1/N. But there are no bound states near the surface in the isotropic model at any
temperatures.

Now, from equation (3.14) one obtains for the surface- and bulk-anisotropy models

Eil,sun‘ace o _KSZ/N2(1+M) Eil,blﬂk) > 2 (3.17)

whereinthe bulkcasé'® = 1inthe main partof the film and the normalization of eigenvectors
¥, has been used. The Curie temperature of the film can be found from equation (2.18) in the
form EL° + E&Y = 0, whereE\” is given ford = 3 by equations (3.3) and (3.4). Explicitly,

one has
K2 27N (1 1
{ (ke N)? } ~ eXp[_ 3 <50 - m)} (3.18)

for the surface- and bulk-anisotropy models, respectively. This results in equations (2.25)
and (2.26), where the numbearsandas cannot be found analytically and should be fitted to
the numerical solution. Remember that this analytical scheme for determinatipnvofks
if the argument of the exponential above is large. The method evidently breaks down for
the bulk-anisotropy model, ¥.N 2> 1. Here the result fof,. crosses over to the finite-size
scaling solution of equation (1.1) with= 2 andA ~ 1/« [3,4]. For the model with surface
anisotropy, equation (3.18) also breaks down at sufficiently |Afghie to the surface phase
transition, which will be considered in more detail in the next section.

For very small anisotropy, the film orders at the temperafureg 6” ~ 1, where
¢31 = 1/N and in equation (3.3fy = O(1) (see the comment after equation (3.8)). This
yields

0-(N) = S VN 67 (N) = 3t (3.19)
TN TN

Ke

N
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for the surface- and bulk-anisotropy models, respectively, in accord with equations (1.3) and
(1.2). It should be stressed that the applicability conditions for the formulae above are difficult
to fulfil for thick films, N > 1. For the latter, the shift of the Curie temperature is typically
small and equations (2.25) and (2.26) are relevant.

Let us consider now ferromagnetic films in dimensions lower than three. For the
continuous-dimension model [6] the lattice Green function of layRys,is given by

d A qd’—ldq N
Py(X) = A =1—q?/2d). 3.20
000 =45 [ o MEL-eed (3.20)
For X close to one this yields
~ | CasZ? d <2

2 (X) {Wd/+cd/K§1/—2 o, ke =v2A/X D) (3.21)

where the Watson integrd¥,, and the coefficien€,; are given by

(d/)z d/ 7Td/

Wy = —— = . 3.22
T @2 —4 T AT SN2 — /2] (3.22)

In three dimensions, the exact resulPigy = [1/(2X)]In[ (1 +X)/(1 — X)]. One should not
mix up Pz o (two continuous dimensions) witPy o (one discrete dimension and one continuous
dimension), etc.

Ford < 3 the first term of equation (3.2) is of ordef A> *"/? and it dominates over
T y. The latter is determined by other low-lying eigenvalues which are of digler (p/N)2.
Thus, =y ~ N34C,. This correction term is retained in the formulae in order to provide
correct limiting transitiond — 3. Using equation (3.21) and equatifg to the anisotropic
correctionEil) with the opposite sign, one obtains

1~ dCy 1 z
QC L= gc,t}ulk + d'N [@) - == : (3-23)
(—E;HED2 Cy

Inserting here expressions f(ﬂil) from equation (3.17) and using the value @ffrom
equation (3.10), one arrives at the final results

d’ nd 1— (cqry) ¥ ING-D2

0. =0 bt — = 3.24
‘ cbulk © A4 Sin[(3 — d)7r/2] (Gycy)3—4 N4—2+3-d?/2 (3.24)
for the surface-anisotropy model and
~ d' d 1- N)3
0 Z 0k + a (@akN) (3.25)

A4 sin[(3—d)r/2] 2N
for the bulk-anisotropy model. Herg, ¢,, anda, are numbers that should be fitted to
the numerical solution. One can check that for— 3 the formulae above go over to
equations (2.25) and (2.26) (the additional factofs t the latter are due to the difference
betweend = 3.0 andd = 3 models). Moreover, both equations (3.24) and (3.25) cross over
to the single resulg;* — 6.}, ~ 1/N92 [4,15] in dimensions above three, which is well
defined in the isotropic limit.

4. Surface phase transition in films

The surface of a semi-infinite magnetic system orders at a temperature above the bulk Curie
temperature if there is a bound surface state of thed@iihger equation (2.16), which lies
below the continuum of the delocalized (bulk) states, Fe.< V.. Inthis case, with lowering
temperatures; reaches the zero value before all other (bulk) eigenvalues, and it dominates the
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Figure 7. Numerically calculated effective potentiali for the isotropic film ¢; = 0) and that
with the extreme surface anisotropy,= 1, for N = 8ind = 3.0 dimensions at the bulk criticality.

longitudinal susceptibility., = 0:(qg = 0)/6 (see equation (2.17)) in the boundary region,
where the eigenfunctiott,; is localized. An example of the surface bound states is shown

in figure 7 for theN = 8 film in 4 = 3.0 dimensions at the bulk criticality. For the isotropic
model, the potential wells near the surfaces are not strong enough to create a bound state. In
contrast, for the extremely strong surface anisotropy the wells are deeper and there are bound
states in each of the wells, which show a small tunnel splitting. Both models possess bulk
states withE,, > 0, which are not shown. The surface-anisotropy dependence of several lowest
energy levels for thick films at the bulk criticality is shown in figure 8. One can see that the
energy levelsE, > 0 nearly scale with AN2, which is characteristic for the bulk. Negative
energies correspond to the states localized near the surfacesiheaee nearly degenerate

and practically independent of.

A natural question is how strong the surface anisotropy should be to create a potential
well which can accomodate a bound state. The well known result in quantum mechanics (see,
e.g., [16]) is that in one dimension a however small potential well creates a bound state with the
energy quadratic in the volume of the well: = —3[ [*_ V(x) dx]?for 2 = 1 andm = 3. If,
however, the potential well is situated near a potential hump or near a rigid wall, localization
of the particle costs additional potential or kinetic energy, respectively, and it requires that the
well strength exceeds some critical value. In this case the result is

E = —A(P — P,)* +const (4.2)

whereP is appropriately determined strength of the well andsfoort-rangepotential wells
¢ = 2. In the particular case of a rectangular well of depggrand widtha, which is sided
by a rigid wall, one ha® = ag, § = Vo, P. = n/2, andA = 7?/(2a)?. If the potential
V(x) has a long tail, the situation becomes more complicated, and the expodentates
from two, as we shall see below.

Calculation of the critical strength, in equation (4.1) for our problem (2.16) requires, in
general, knowing the potenti&], in the whole range of including the surface region,~ 1.
Whereas at the bulk criticality the asymptotic formigfis given by equation (3.11), the values
of V, forn ~ 1 can only be determined numerically [6]. Nevertheless, it can be shown that the
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Figure 8. Surface-anisotropy dependence of the lowest energy levels of the poténtiar
N = 100 andN = 400 films at the bulk criticality.

isotropic semi-infinite model at the bulk criticality ih< 3 dimensions is in the critical state,

P = P.. A however small surface anisotropy makes the well deeper in the regian~ 1

and it thus creates a surface bound state. As was argued above, this leads to the surface phase
transition. This strong result follows from the form of the spin CF, which in the asymptotic
regionn, n’ > 1 forq « 1 reads [6,10,11]
WI;L(QH)K/L(‘I”,) n<n
Vnn'L(gn')K,(gn) 0 <n
with u defined by equation (3.10). Far from the boundamy, gn’ > 1, this CF reduces

to its bulk value o, (q) = (d8/q) exp(—g|n — n’|). In the regiomm, n’ ~ 1 equation (4.2)

is modified by nonsingular factors of order unity [6]. The spin CF above is proportional
to the Green function which can be used to calculate perturbations of the solution of the
problem (2.16), wittE = ¢2, due to small perturbations of the potentfal Such a perturbation
theory, fails, however, in the bulk, since the bulk Green function above also diverges for
g — 0. A however small perturbation df, changes the wavefunctions with — 0 in a
nonperturbative way, which leads to formation of bound states for attractive perturbations [16].
To analyse the semi-infinite problem, one can use

Onn(q) = 240 (42)

~ 1 Z\M 2
1,(z) = F(l—w (z) [1+0(z9)] 7kl “3)
K,(2) = m[I—M(Z) = 1,(2)]

for the modified Bessel and Macdonald functions. One can see that £010 (i.e.,d < 3)
the Green function above diverges in the lignit> 0 (for d = 3 logarithmically), whereas for
u > 0 (i.e.,d > 3) it remains finite in this limit. Thus, id > 3 dimensions there should be
a critical value of the surface anisotropy,., above which there is a surface phase transition,
whereas for/ < 3 one hag), . = 0.

Different behaviour fod > 3 andd < 3 observed above is entirely due to the different
forms of V, for n ~ 1, whereas in the asymptotic regian>> 1 the potentialV, given by
equation (3.11) is the same below and above three dimensions. If one goes away=fr81im
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both directions, the attractive tail &, weakens, but foil < 3 the depth of the well increases

in the surface regiom ~ 1, (see figure X of [6]), so that the well always remains in the
critical state. In the limiZ — 2 the attractive tail oV,, disappears, and the variation of the
gap parametet;,, approaches equation (3.8), which correspondgte- Vy = —1,V, =0

(n #£ 1, N). It can be checked directly that a however small further decrease of the boundary
value of this potential leads, for the semi-infinite problex¥,= oo, to the formation of a
bound state. Determination &f, for n ~ 1 is an analytically intractable nonlinear problem.
Nevertheless, Bray and Moore [10, 11] could obtain the spin CF of equation (4.2), which has
differentforms ford > 3 andd < 3 and contains the relevant information, without explicitly
analysing the region ~ 1!

Now let us analyse how the energy of the surface bound state depends on the strength of
the potential well if the latter slightly exceeds its critical value. For simplification, we will
consider, instead of equation (2.16), a continuous&tihger equation-y” + V (x)y = Ey
with the potentialV (x) modelled as

00 x <0
Vx) =1 -V 0<x<a (4.4)
~G -1/ x>a

(cf equation (3.11)). If we chooge= /2, then ford = 2 the long tail ofV (x) disappears and

Vo = 1 becomes the critical depth of the potential well, as for the original discrete problem. In
general, this method says nothing about the critical value of the surface anisotropy, but allows
the determination of the exponentin equation (4.1). The bound solution of the problem
above, if it exists, has the form

Cy sin(gx) 0<x<a (g=vE+W)

Vv(x) = _ . _

Covikx K, (kx) X >a (k =+—E).

Here, for very smal|E|, one can negled in g and use the small-argument form &f, (z),
which follows from equation (4.3). Then the boundary conditions at a result in the
equation determining:
o cotia = L — [ 2Anl@ar,)2 _L[r@— Ve
Aasaa =5 = M= T Rar,)2m =5 Ta :
Settingk = 0 determines the critical value of the well strendth say, its depthi/,. For P
slightly aboveP,., equation (4.6) can be represented in the form

(4.5)

(4.6)

~ |ul(Rar,)?H!
B(P—P) = Wr’;)zw 4.7)

which yields

2

for the energy of the bound state. One can see that the ‘classical’ one-dimensional behaviour
with the quadratic dependence|d@| on P — P, is only realized fod = 2 andd = 4 where

| = % and the long tail ofV (x) in equation (4.4) disappears. Rér= 3 equation (4.8)
regularizes to the expression

EZ= 2 2ex 1 =0.5772 (4.9)
__<J> p[_B(P—PC)] P |

which resembles the well known result for the energy of the bound state in two dimensions
[16]. Indeed, in two dimensions the radial paftr) of the wavefunction¥(r, ¢) =

o~ 1 B(P—P) Y™ _d-3
F=-= (aru)2|:|l/«|+B(P—Pc)j| H= “9
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r~ Y2y (r) exp(£ime), m = 0,1, 2, ... for the problemwithout potential energy satisfies

the one-dimensional Sdbdlinger equation with the effective potential energy written in
equation (4.4) forx > a, with © = m (see, e.g., [17]). Now, returning to the original
problem with the surface anisotropy, one can notice that the depth of the potential wells near
the surfaces change linearly with thus, one can replade— P. by n; —n, . in equations (4.8)

and (4.9), wherg, . = 0 ford < 3. '

The temperature of the surface phase transitfoncan now be determined using the
results above. Af,., which is slightly above)®, the energy of the bound state equals zero,
but the bulk level of the potential/,,, slightly exceeds zero. The value &f can be found
equating| E|, which is given by equation (4.8), td.:

|E| = Voo ~ 1= G ~ k% ~ (6. — 6P1K)2% (4.10)
wherev, = 1/(d — 2) is the critical index for the bulk correlation length for tlie = oo
model. This yields

0, — obuk = |: B(n; —ng.) i|1/¢ P G 3|. (4.11)
‘ Il + B(ng — 15 ) d—2
The critical indexd® was calculated in [18] for the model with arbitrary number of spin
components: in the second order ia = 4 — d. In the limitn — oo the result of [18]
becomesd = 1 — /4 — £2/8 + O(e®), which is in accord with equation (4.11). Note,
however, that the expansion fails below three dimensions for the model with an infinite
number of spin components, which is considered here.
In films, surface bound states cannot be rigorously separated from the bulk ones. If these
bound states are very shallow, which is the case near the special trangiti§iie= 6°1),
the localization length of the bound states is very large and it exceeds the thickness of the film.
Because of this finite-size effect, the critical value of the parameter which controls the surface
phase transition (here the surface anisotropy) cannot be determined unambiguously. A natural
choice is to defing, . (V) from the conditioro. (N, 0, .) = 6>*. The value ofy, .(N) can be
found as the point of the intersection of the lowest eigenvalu@, n;) with the zero level at
the bulk criticality (see figure 8). For the model with symmetric surfaces, however, the second
eigenvalue E», also goes down, crosses the zero level at a somewhat larger vaj(iamod
then very quickly becomes almost degenerate \ith The latter situation corresponds to the
two bound states well localized on both surfaces, with a small tunnel splitting. Thus, crossing
of E2(N, ) with the zero level, as well as the degenerac¥oiwith E», could also be used
as a criterion for the formation of bound states and thus for the special transition. Another,
probably better possibility is to consider the film with a surface anisotropy on only one of the
two surfaces. Here there is no complication arising from the tunnelling between the bound
states across the film; only the lowest eigenvalyeoes over to the bound state, wher&as
always remains positive.
In films there is no singularity in the dependencekafon the surface anisotropy, this
dependence is linear neAj = 0. On the other hand, the singularity Bf(5;) studied above
for the semi-infinite problem above mirrors in the dependerjcéN). This dependence can
be obtained if one uses a potential of the type of equation (4.4) for a filmgset9 and
imposes the symmetry condition on the wavefunction in the middle of thexikn,L /2. This
yields equation (4.7) wittP = P.(L), P. = P.(c0) andk = 2/L. In terms of the original
variables, dropping numerical factors, one can write
, , 2|M|N72|m 1
Mo (N) = 1,0 (00) ~ T = i
This result, as well as the conjectuyg.(co) = 0 ford < 3 made at the beginning of this
section, are confirmed by numerical calculations, the results of which are shown in figure 9.

d=3). (4.12)



Ordering in magnetic films with surface anisotropy 4341

N’y (V)
015 N 1 L 1 L 1 L I//.// 1
xy’/o////
Q,C'
,feéoéwée d=35
0104 .
d=3/l//./ .
,/’ 9”’/
o o T d=30
005— ////’O’Oge’ o
/’/ ,f’o _
;:::f:ii e ® //d=25
0.00 +=2+—

0.00 0.65 I 0.|10 I 0.|15 I 0.|20 I 0.|25 I 0.30
N12(d=25,35), 1/InN (d=3,3.0)

Figure 9. Critical surface anisotropy versus film thickness &QV < 500 ford = 3, 3.0, 3.5 and
50 < N < 170 ford = 2.5) in different dimensions. The data correspond to the film with surface
anisotropy on one of the two surfaces. The straight dashed lines are fits to the numerical data.

/

Positive values ofy; .(N), even ford < 3, reflect the general tendency of the film to
order at a temperature below the bulk Curie temperature. The latter is the case considered in
the preceding section, and now it is clear that the applicability criterion for equations (2.25)
and (3.24) isy; < n, .(N). Ford < 3, equations (2.25) and (3.24) break down for however
small surface anisotropy/, if the film thicknessV is large enough. One can see that in three
dimensionsy; .(N) decreases logarithmically slowly, thus equation (2.25) works in a wide
rangeN < exp(1/n;) for small surface anisotropies. The applicability range of equation (3.24)
shrinks quickly with the descease of the spatial dimengion

5. Discussion

In this paper it has been shown that the finite-size scaling formula forTthshift in
magnetic films, equation (1.1), which seems to be the only theoretical tool for interpretation of
experiments (see, e.g., [14]), in fact, only describes one of several regimes. For the model with
bulk anisotropy, the situation depends on the ratio of the film thickiveasad the transverse
correlation lengtt§., , which is usually ignored as a noncritical variable. Bor. > 1, where

k. = 1/&., at criticality, a different regime described by equation (2.26) [3, 4] is realized
instead of equation (1.1). For the model with surface anisotropy, which is present in many
experimentally investigated films, equation (1.1) never appears. Insteaf], shét follows
equation (2.25) in three dimensions for small enough surface anisotropy. If surface anisotropy
exceeds the critical valug; > n; .(N), equation (2.25) breaks down and the film orders via
the surface phase transition above the bulk Curie temperature (see figure 1). A remarkable
result is thaty; .(N) goes to zero in the semi-infinite limiy — oo, ford < 3 (see figure 9).

That is, a however small surface anisotropy leads to the surface phase transition in the bulk-
isotropic semi-infinite model. This is in contrast to the isotropic model with enhanced surface
exchange, which does not show any surface phase transitiah<o8. In three dimensions,
n;..(N) ~ 1/In N, thus equation (2.25) is valid in a wide range of the film thicknesses:
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N < exp(d/n,) for n, « 1.

One can question whether all these effects, which have been demonstrated above for the
D = oo model, survive for the realistic classical Heisenberg mobek: 3. | expect that, in
general, these effects should survive, because they are due to the nearly Goldstone modes in
a weakly anisotropic magnetic system, and these Goldstone modes are inherent in all models
with D > 2. On the other hand, the nonlinear coupling of fluctuations, which arises for a finite
number of spin componenf3, suppresses fluctuations to some extent. This can already be
seen from the fact that in the bulk = 7./ TM™ monotonically decreases wifh and reaches
its minimum in the spherical limith = oo (strongest fluctuations). For the semi-infinite
problem, the surface susceptibility; at the ordinary phase transition divergesdog 3 (i.e.,
yf{d > 0 ford < 3), if D = co. For finite D, the second-order expansion (see, e.g., [18]
and references therein, or, for a review, [19]) suggestsfjaremains positive af = 3 (no
divergence of the surface susceptibility) and probably changes sign at some critical dimension
lower than three. Thus, fluctuations are somewhat suppressed, and the situation is a bit closer
to the mean-field onel(= 4), in comparison to the limib = oco. This is an indication that in
three dimensions finite value of the surface anisotropy may be needed for the surface phase
transition, in contrast to the zero value obtained in section 4. Computing this critical value of
the surface anisotropy with the help of MC simulations or other methods, as well as searching
for the regimes for thé&, shift in the films established above (or rather for their analogues for
the Heisenberg model), seems to be an interesting problem.
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